Analytical, FEA, and experimental research of 2D-Vibration Assisted Cutting (2D-VAC) in titanium alloy Ti6Al4V

نویسندگان

چکیده

In the 2D-Vibration Assisted Cutting (2D-VAC) method, cutting tool shakes in a 2-dimensional approach because of superimposed high-frequency modulation. This modulation effect creates displacement at tiny scale micrometers and causes an escalation resultant speed. Consequently, 2D-VAC has superior advantages compared to traditional (TC). manuscript describes research on that focuses modeling forces (mathematical model) finite element analysis (FEA) results. The FEA results are focused von Mises stress, plastic strain, force, temperature, residual stress. addition, experiment for chip formation, micro-structure layer, micro-hardness was also analyzed this study. According results, force comparable pattern stress contour result confirms method lower than TC during retraction mode. Additionally, strain can be higher method. temperature peak could shows there is compressive effect. Thus, Micro-hardness confirmed not too much change from original surface morphology significant shear deformation flow case although less occurs

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of loose powder sintered porous titanium and Ti6Al4V alloy

Porous titanium and Ti6Al4V alloy, biomedical candidate materials for use in orthopedic and dental implants, were manufactured by sintering the powders at various temperatures in loose condition. The characteristics of the corresponding powders and utilized sintering temperatures limited the final porosities in the range 30-37.5 vol. %. Similar to wrought alloys, compression stress-strain curve...

متن کامل

Machinability evaluation of Titanium alloy in Laser Assisted Turning

The use of titanium and its alloys has increased in various industries recently, because of their superior properties of these alloys. Titanium alloys are generally classified as difficult to machine materials because of their thermo-mechanical properties such as high strength-to-weight ratio and low thermal conductivity. Laser Assisted Machining (LAM) improves the machinability of high strengt...

متن کامل

Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders.

The paper presents the method of the argon - shielded hot pressing of titanium alloy (Ti6A14V) powder (used in medical industry). The powders produced in the GA (gas atomization) process and in the HDH (hydride - dehydride) process were used in the experiments. A pressing process was conducted at a temperature of 800-850 degrees C for different lengths of time. An unoxidized sintered material, ...

متن کامل

Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets w...

متن کامل

Morphological studies on machined implants of commercially pure titanium and titanium alloy (Ti6Al4V) in the rabbit.

The aim of this study was to evaluate the bone response to commercially pure titanium grade I and titanium alloy grade V (90% Ti, 6% Al, and 4% V, depicted Ti6Al4V) after 8 weeks in rabbit tibia. Interference microscopy and scanning electron microscopy were used for surface analyses. Transmission electron microscopy (TEM) was used for evaluation of surface crystallinity and chemistry after prep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Advanced Manufacturing Technology

سال: 2021

ISSN: ['1433-3015', '0268-3768']

DOI: https://doi.org/10.1007/s00170-021-07831-8